Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

ASCENT-ViT: Attention-based Scale-aware Concept Learning Framework for Enhanced Alignment in Vision Transformers (2501.09221v2)

Published 16 Jan 2025 in cs.CV and cs.LG

Abstract: As Vision Transformers (ViTs) are increasingly adopted in sensitive vision applications, there is a growing demand for improved interpretability. This has led to efforts to forward-align these models with carefully annotated abstract, human-understandable semantic entities - concepts. Concepts provide global rationales to the model predictions and can be quickly understood/intervened on by domain experts. Most current research focuses on designing model-agnostic, plug-and-play generic concept-based explainability modules that do not incorporate the inner workings of foundation models (e.g., inductive biases, scale invariance, etc.) during training. To alleviate this issue for ViTs, in this paper, we propose ASCENT-ViT, an attention-based, concept learning framework that effectively composes scale and position-aware representations from multiscale feature pyramids and ViT patch representations, respectively. Further, these representations are aligned with concept annotations through attention matrices - which incorporate spatial and global (semantic) concepts. ASCENT-ViT can be utilized as a classification head on top of standard ViT backbones for improved predictive performance and accurate and robust concept explanations as demonstrated on five datasets, including three widely used benchmarks (CUB, Pascal APY, Concept-MNIST) and 2 real-world datasets (AWA2, KITS).

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 8 likes.

Upgrade to Pro to view all of the tweets about this paper: