Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 168 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Quantifying the Importance of Data Alignment in Downstream Model Performance (2501.08496v3)

Published 14 Jan 2025 in cs.CL, cs.AI, cs.LG, and cs.PL

Abstract: Contrary to the conventional emphasis on dataset size, we explore the role of data alignment -- an often overlooked aspect of data quality -- in training capable LLMs. To do so, we use the Task2Vec-based alignment coefficient, a quantitative measure of the similarity between two datasets, to quantify the impact of alignment between training data and evaluation data on downstream performance. In particular, we conduct controlled \textit{interventional} experiments for two settings: 1. the impact of increased alignment coefficients between various pre-training (pt) against evaluation datasets, and 2. the impact of increased alignment coefficients between domain specific fine-tuning (ft) against domain specific evaluation. The domain specific task we explore is Autoformalization -- the machine translation task between natural language and code for formal verification. In both settings, we find a strong, predictable negative correlation between the alignment coefficient of a model's training and evaluation data and the model's loss/perplexity on the respective downstream task. These findings suggest a re-evaluation of LLM training approaches, demonstrating the relevance of data alignment compared to data quantity, especially in specialized downstream tasks such as Autoformalization.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 posts and received 1 like.