Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 59 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 127 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 421 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

A Linear Parameter-Varying Framework for the Analysis of Time-Varying Optimization Algorithms (2501.07461v2)

Published 13 Jan 2025 in math.OC, cs.SY, and eess.SY

Abstract: In this paper we propose a framework to analyze iterative first-order optimization algorithms for time-varying convex optimization. We assume that the temporal variability is caused by a time-varying parameter entering the objective, which can be measured at the time of decision but whose future values are unknown. We consider the case of strongly convex objective functions with Lipschitz continuous gradients under a convex constraint set. We model the algorithms as discrete-time linear parameter varying (LPV) systems in feedback with monotone operators such as the time-varying gradient. We leverage the approach of analyzing algorithms as uncertain control interconnections with integral quadratic constraints (IQCs) and generalize that framework to the time-varying case. We propose novel IQCs that are capable of capturing the behavior of time-varying nonlinearities and leverage techniques from the LPV literature to establish novel bounds on the tracking error. Quantitative bounds can be computed by solving a semi-definite program and can be interpreted as an input-to-state stability result with respect to a disturbance signal which increases with the temporal variability of the problem. As a departure from results in this research area, our bounds introduce a dependence on different additional measures of temporal variations, such as the function value and gradient rate of change. We exemplify our main results with numerical experiments that showcase how our analysis framework is able to capture convergence rates of different first-order algorithms for time-varying optimization through the choice of IQC and rate bounds.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.