Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
11 tokens/sec
Gemini 2.5 Pro Pro
53 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
10 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Towards a scalable AI-driven framework for data-independent Cyber Threat Intelligence Information Extraction (2501.06239v1)

Published 8 Jan 2025 in cs.CR, cs.AI, and cs.CL

Abstract: Cyber Threat Intelligence (CTI) is critical for mitigating threats to organizations, governments, and institutions, yet the necessary data are often dispersed across diverse formats. AI-driven solutions for CTI Information Extraction (IE) typically depend on high-quality, annotated data, which are not always available. This paper introduces 0-CTI, a scalable AI-based framework designed for efficient CTI Information Extraction. Leveraging advanced NLP techniques, particularly Transformer-based architectures, the proposed system processes complete text sequences of CTI reports to extract a cyber ontology of named entities and their relationships. Our contribution is the development of 0-CTI, the first modular framework for CTI Information Extraction that supports both supervised and zero-shot learning. Unlike existing state-of-the-art models that rely heavily on annotated datasets, our system enables fully dataless operation through zero-shot methods for both Entity and Relation Extraction, making it adaptable to various data availability scenarios. Additionally, our supervised Entity Extractor surpasses current state-of-the-art performance in cyber Entity Extraction, highlighting the dual strength of the framework in both low-resource and data-rich environments. By aligning the system's outputs with the Structured Threat Information Expression (STIX) format, a standard for information exchange in the cybersecurity domain, 0-CTI standardizes extracted knowledge, enhancing communication and collaboration in cybersecurity operations.

Summary

We haven't generated a summary for this paper yet.