Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 176 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

SyNPar: Synthetic Null Data Parallelism for High-Power False Discovery Rate Control in High-Dimensional Variable Selection (2501.05012v1)

Published 9 Jan 2025 in stat.ME and q-bio.QM

Abstract: Balancing false discovery rate (FDR) and statistical power to ensure reliable discoveries is a key challenge in high-dimensional variable selection. Although several FDR control methods have been proposed, most involve perturbing the original data, either by concatenating knockoff variables or splitting the data into two halves, both of which can lead to a loss of power. In this paper, we introduce a novel approach called Synthetic Null Parallelism (SyNPar), which controls the FDR in high-dimensional variable selection while preserving the original data. SyNPar generates synthetic null data from a model fitted to the original data and modified to reflect the null hypothesis. It then applies the same estimation procedure in parallel to both the original and synthetic null data to estimate coefficients that indicate feature importance. By comparing the coefficients estimated from the null data with those from the original data, SyNPar effectively identifies false positives, functioning as a numerical analog of a likelihood ratio test. We provide theoretical guarantees for FDR control at any desired level while ensuring that the power approaches one with high probability asymptotically. SyNPar is straightforward to implement and can be applied to a wide range of statistical models, including high-dimensional linear regression, generalized linear models, Cox models, and Gaussian graphical models. Through extensive simulations and real data applications, we demonstrate that SyNPar outperforms state-of-the-art methods, including knockoffs and data-splitting methods, in terms of FDR control, power, and computational efficiency.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube