Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 91 tok/s
Gemini 3.0 Pro 46 tok/s Pro
Gemini 2.5 Flash 148 tok/s Pro
Kimi K2 170 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Learning by Confusion: The Phase Diagram of the Holstein Model (2501.04681v5)

Published 8 Jan 2025 in cond-mat.str-el and cond-mat.dis-nn

Abstract: We employ the "learning by confusion" technique, an unsupervised machine learning approach for detecting phase transitions, to analyze quantum Monte Carlo simulations of the two-dimensional Holstein model--a fundamental model for electron-phonon interactions on a lattice. Utilizing a convolutional neural network, we conduct a series of binary classification tasks to identify Holstein critical points based on the neural network's learning accuracy. We further evaluate the effectiveness of various training datasets, including snapshots of phonon fields and other measurements resolved in imaginary time, for predicting distinct phase transitions and crossovers. Our results culminate in the construction of the finite-temperature phase diagram of the Holstein model.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 4 tweets and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: