Papers
Topics
Authors
Recent
2000 character limit reached

SEO: Stochastic Experience Optimization for Large Language Models

Published 8 Jan 2025 in cs.CL | (2501.04393v1)

Abstract: LLMs can benefit from useful experiences to improve their performance on specific tasks. However, finding helpful experiences for different LLMs is not obvious, since it is unclear what experiences suit specific LLMs. Previous studies intended to automatically find useful experiences using LLMs, while it is difficult to ensure the effectiveness of the obtained experience. In this paper, we propose Stochastic Experience Optimization (SEO), an iterative approach that finds optimized model-specific experience without modifying model parameters through experience update in natural language. In SEO, we propose a stochastic validation method to ensure the update direction of experience, avoiding unavailing updates. Experimental results on three tasks for three LLMs demonstrate that experiences optimized by SEO can achieve consistently improved performance. Further analysis indicates that SEO-optimized experience can generalize to out-of-distribution data, boosting the performance of LLMs on similar tasks.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.