Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 109 tok/s
Gemini 3.0 Pro 52 tok/s Pro
Gemini 2.5 Flash 159 tok/s Pro
Kimi K2 203 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

H-MBA: Hierarchical MamBa Adaptation for Multi-Modal Video Understanding in Autonomous Driving (2501.04302v1)

Published 8 Jan 2025 in cs.CV and cs.AI

Abstract: With the prevalence of Multimodal LLMs(MLLMs), autonomous driving has encountered new opportunities and challenges. In particular, multi-modal video understanding is critical to interactively analyze what will happen in the procedure of autonomous driving. However, videos in such a dynamical scene that often contains complex spatial-temporal movements, which restricts the generalization capacity of the existing MLLMs in this field. To bridge the gap, we propose a novel Hierarchical Mamba Adaptation (H-MBA) framework to fit the complicated motion changes in autonomous driving videos. Specifically, our H-MBA consists of two distinct modules, including Context Mamba (C-Mamba) and Query Mamba (Q-Mamba). First, C-Mamba contains various types of structure state space models, which can effectively capture multi-granularity video context for different temporal resolutions. Second, Q-Mamba flexibly transforms the current frame as the learnable query, and attentively selects multi-granularity video context into query. Consequently, it can adaptively integrate all the video contexts of multi-scale temporal resolutions to enhance video understanding. Via a plug-and-play paradigm in MLLMs, our H-MBA shows the remarkable performance on multi-modal video tasks in autonomous driving, e.g., for risk object detection, it outperforms the previous SOTA method with 5.5% mIoU improvement.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.