Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 136 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Efficient Computation of Collatz Sequence Stopping Times: A Novel Algorithmic Approach (2501.04032v2)

Published 1 Jan 2025 in cs.MS

Abstract: The Collatz conjecture, which posits that any positive integer will eventually reach 1 through a specific iterative process, is a classic unsolved problem in mathematics. This research focuses on designing an efficient algorithm to compute the stopping time of numbers in the Collatz sequence, achieving significant computational improvements. By leveraging structural patterns in the Collatz tree, the proposed algorithm minimizes redundant operations and optimizes computational steps. Unlike prior methods, it efficiently handles extremely large numbers without requiring advanced techniques such as memoization or parallelization. Experimental evaluations confirm computational efficiency improvements of approximately 28% over state-of-the-art methods. These findings underscore the algorithm's scalability and robustness, providing a foundation for future large-scale verification of the conjecture and potential applications in computational mathematics.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com
Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.