Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Computing accurate eigenvalues using a mixed-precision Jacobi algorithm (2501.03742v4)

Published 7 Jan 2025 in math.NA and cs.NA

Abstract: We provide a rounding error analysis of a mixed-precision preconditioned Jacobi algorithm, which uses low precision to compute the preconditioner, applies it at high precision (amounting to two matrix-matrix multiplications) and solves the eigenproblem using the Jacobi algorithm at working precision. Our analysis yields meaningfully smaller relative forward error bounds for the computed eigenvalues compared with those of the Jacobi algorithm. We further prove that, after preconditioning, if the off-diagonal entries of the preconditioned matrix are sufficiently small relative to its smallest diagonal entry, the relative forward error bound is independent of the condition number of the original matrix. We present two constructions for the preconditioner that exploit low precision, along with their error analyses. Our numerical experiments confirm our theoretical results and compare the relative forward error of the proposed algorithm with the Jacobi algorithm, a preconditioned Jacobi algorithm, and MATLAB's $\texttt{eig}$ function. Timings using Julia suggest that the dominant cost of obtaining this level of accuracy comes from the high precision matrix-matrix multiplies; if support in software or hardware for this were improved then this would become a negligible cost.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.