Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A mixed precision Jacobi method for the symmetric eigenvalue problem (2211.03339v1)

Published 7 Nov 2022 in math.NA and cs.NA

Abstract: The eigenvalue problem is a fundamental problem in scientific computing. In this paper, we propose a mixed precision Jacobi method for the symmetric eigenvalue problem. We first compute the eigenvalue decomposition of a real symmetric matrix by an eigensolver at low precision and we obtain a low-precision matrix of eigenvectors. Then by using the modified Gram-Schmidt orthogonalization process to the low-precision eigenvector matrix in high precision, a high-precision orthogonal matrix is obtained, which is used as an initial guess for the Jacobi method. We give the rounding error analysis for the proposed method and the quadratic convergence of the proposed method is established under some sufficient conditions. We also present a mixed precision one-side Jacobi method for the singular value problem and the corresponding rounding error analysis and quadratic convergence are discussed. Numerical experiments on CPUs and GPUs are conducted to illustrate the efficiency of the proposed mixed precision Jacobi method over the original Jacobi method.

Summary

We haven't generated a summary for this paper yet.