Papers
Topics
Authors
Recent
2000 character limit reached

CodeVision: Detecting LLM-Generated Code Using 2D Token Probability Maps and Vision Models (2501.03288v1)

Published 6 Jan 2025 in cs.SE and cs.AI

Abstract: The rise of LLMs like ChatGPT has significantly improved automated code generation, enhancing software development efficiency. However, this introduces challenges in academia, particularly in distinguishing between human-written and LLM-generated code, which complicates issues of academic integrity. Existing detection methods, such as pre-trained models and watermarking, face limitations in adaptability and computational efficiency. In this paper, we propose a novel detection method using 2D token probability maps combined with vision models, preserving spatial code structures such as indentation and brackets. By transforming code into log probability matrices and applying vision models like Vision Transformers (ViT) and ResNet, we capture both content and structure for more accurate detection. Our method shows robustness across multiple programming languages and improves upon traditional detectors, offering a scalable and computationally efficient solution for identifying LLM-generated code.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.