Papers
Topics
Authors
Recent
2000 character limit reached

Multimodal Machine Learning Can Predict Videoconference Fluidity and Enjoyment (2501.03190v2)

Published 6 Jan 2025 in cs.LG, cs.HC, eess.AS, and eess.IV

Abstract: Videoconferencing is now a frequent mode of communication in both professional and informal settings, yet it often lacks the fluidity and enjoyment of in-person conversation. This study leverages multimodal machine learning to predict moments of negative experience in videoconferencing. We sampled thousands of short clips from the RoomReader corpus, extracting audio embeddings, facial actions, and body motion features to train models for identifying low conversational fluidity, low enjoyment, and classifying conversational events (backchanneling, interruption, or gap). Our best models achieved an ROC-AUC of up to 0.87 on hold-out videoconference sessions, with domain-general audio features proving most critical. This work demonstrates that multimodal audio-video signals can effectively predict high-level subjective conversational outcomes. In addition, this is a contribution to research on videoconferencing user experience by showing that multimodal machine learning can be used to identify rare moments of negative user experience for further study or mitigation.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 3 tweets with 1 like about this paper.