Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 148 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

A Faster Algorithm for Constrained Correlation Clustering (2501.03154v1)

Published 6 Jan 2025 in cs.DS

Abstract: In the Correlation Clustering problem we are given $n$ nodes, and a preference for each pair of nodes indicating whether we prefer the two endpoints to be in the same cluster or not. The output is a clustering inducing the minimum number of violated preferences. In certain cases, however, the preference between some pairs may be too important to be violated. The constrained version of this problem specifies pairs of nodes that must be in the same cluster as well as pairs that must not be in the same cluster (hard constraints). The output clustering has to satisfy all hard constraints while minimizing the number of violated preferences. Constrained Correlation Clustering is APX-Hard and has been approximated within a factor 3 by van Zuylen et al. [SODA '07] using $\Omega(n{3\omega})$ time. In this work, using a more combinatorial approach, we show how to approximate this problem significantly faster at the cost of a slightly weaker approximation factor. In particular, our algorithm runs in $\widetilde{O}(n3)$ time and approximates Constrained Correlation Clustering within a factor 16. To achieve our result we need properties guaranteed by a particular influential algorithm for (unconstrained) Correlation Clustering, the CC-PIVOT algorithm. This algorithm chooses a pivot node $u$, creates a cluster containing $u$ and all its preferred nodes, and recursively solves the rest of the problem. As a byproduct of our work, we provide a derandomization of the CC-PIVOT algorithm that still achieves the 3-approximation; furthermore, we show that there exist instances where no ordering of the pivots can give a $(3-\varepsilon)$-approximation, for any constant $\varepsilon$. Finally, we introduce a node-weighted version of Correlation Clustering, which can be approximated within factor 3 using our insights on Constrained Correlation Clustering.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: