Papers
Topics
Authors
Recent
2000 character limit reached

InfiFusion: A Unified Framework for Enhanced Cross-Model Reasoning via LLM Fusion

Published 6 Jan 2025 in cs.CL and cs.CV | (2501.02795v3)

Abstract: We introduce InfiFusion, an efficient training pipeline designed to integrate multiple domain-specialized LLMs into a single pivot model, effectively harnessing the strengths of each source model. Traditional fusion methods either merge model parameters directly or rely on knowledge distillation with rigid assumptions, limiting their flexibility and efficiency. InfiFusion overcomes these limitations by enhancing Universal Logit Distillation (ULD) with Top-K selection and Logits Standardization. We propose two fusion strategies: Pairwise Fusion (InfiFusion$_p$), where each source model knowledge is distilled individually into the pivot model followed by merging and Unified Fusion (InfiFusion$_u$), where knowledge from all source models is distilled simultaneously into the pivot model. InfiFusion outperforms the state-of-the-art models, such as Qwen-2.5-14B-Instruct and Phi-4, across 11 widely applied benchmarks covering reasoning, coding, mathematics, and instruction-following tasks. Notably, InfiFusion achieves this superior performance while significantly reduces computational costs, completing full training with only 160 H800 GPU hours compared to the millions typically required for traditional LLM training.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.