Papers
Topics
Authors
Recent
2000 character limit reached

LLMs Help Alleviate the Cross-Subject Variability in Brain Signal and Language Alignment (2501.02621v2)

Published 5 Jan 2025 in cs.NE and cs.AI

Abstract: Decoding human activity from EEG signals has long been a popular research topic. While recent studies have increasingly shifted focus from single-subject to cross-subject analysis, few have explored the model's ability to perform zero-shot predictions on EEG signals from previously unseen subjects. This research aims to investigate whether deep learning methods can capture subject-independent semantic information inherent in human EEG signals. Such insights are crucial for Brain-Computer Interfaces (BCI) because, on one hand, they demonstrate the model's robustness against subject-specific temporal biases, and on the other, they significantly enhance the generalizability of downstream tasks. We employ LLMs as denoising agents to extract subject-independent semantic features from noisy EEG signals. Experimental results, including ablation studies, highlight the pivotal role of LLMs in decoding subject-independent semantic information from noisy EEG data. We hope our findings will contribute to advancing BCI research and assist both academia and industry in applying EEG signals to a broader range of applications.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We found no open problems mentioned in this paper.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 2 likes.

Upgrade to Pro to view all of the tweets about this paper: