Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 171 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 60 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Machine Learning-Based Differential Diagnosis of Parkinson's Disease Using Kinematic Feature Extraction and Selection (2501.02014v1)

Published 2 Jan 2025 in cs.LG and cs.AI

Abstract: Parkinson's disease (PD), the second most common neurodegenerative disorder, is characterized by dopaminergic neuron loss and the accumulation of abnormal synuclein. PD presents both motor and non-motor symptoms that progressively impair daily functioning. The severity of these symptoms is typically assessed using the MDS-UPDRS rating scale, which is subjective and dependent on the physician's experience. Additionally, PD shares symptoms with other neurodegenerative diseases, such as progressive supranuclear palsy (PSP) and multiple system atrophy (MSA), complicating accurate diagnosis. To address these diagnostic challenges, we propose a machine learning-based system for differential diagnosis of PD, PSP, MSA, and healthy controls (HC). This system utilizes a kinematic feature-based hierarchical feature extraction and selection approach. Initially, 18 kinematic features are extracted, including two newly proposed features: Thumb-to-index vector velocity and acceleration, which provide insights into motor control patterns. In addition, 41 statistical features were extracted here from each kinematic feature, including some new approaches such as Average Absolute Change, Rhythm, Amplitude, Frequency, Standard Deviation of Frequency, and Slope. Feature selection is performed using One-way ANOVA to rank features, followed by Sequential Forward Floating Selection (SFFS) to identify the most relevant ones, aiming to reduce the computational complexity. The final feature set is used for classification, achieving a classification accuracy of 66.67% for each dataset and 88.89% for each patient, with particularly high performance for the MSA and HC groups using the SVM algorithm. This system shows potential as a rapid and accurate diagnostic tool in clinical practice, though further data collection and refinement are needed to enhance its reliability.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.