Papers
Topics
Authors
Recent
2000 character limit reached

Probing Equivariance and Symmetry Breaking in Convolutional Networks (2501.01999v3)

Published 1 Jan 2025 in cs.CV, cs.AI, and cs.LG

Abstract: In this work, we explore the trade-offs of explicit structural priors, particularly group equivariance. We address this through theoretical analysis and a comprehensive empirical study. To enable controlled and fair comparisons, we introduce \texttt{Rapidash}, a unified group convolutional architecture that allows for different variants of equivariant and non-equivariant models. Our results suggest that more constrained equivariant models outperform less constrained alternatives when aligned with the geometry of the task, and increasing representation capacity does not fully eliminate performance gaps. We see improved performance of models with equivariance and symmetry-breaking through tasks like segmentation, regression, and generation across diverse datasets. Explicit \textit{symmetry breaking} via geometric reference frames consistently improves performance, while \textit{breaking equivariance} through geometric input features can be helpful when aligned with task geometry. Our results provide task-specific performance trends that offer a more nuanced way for model selection.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 3 tweets with 95 likes about this paper.