Papers
Topics
Authors
Recent
2000 character limit reached

GAF-FusionNet: Multimodal ECG Analysis via Gramian Angular Fields and Split Attention (2501.01960v1)

Published 7 Dec 2024 in cs.CV, cs.AI, cs.GR, and cs.LG

Abstract: Electrocardiogram (ECG) analysis plays a crucial role in diagnosing cardiovascular diseases, but accurate interpretation of these complex signals remains challenging. This paper introduces a novel multimodal framework(GAF-FusionNet) for ECG classification that integrates time-series analysis with image-based representation using Gramian Angular Fields (GAF). Our approach employs a dual-layer cross-channel split attention module to adaptively fuse temporal and spatial features, enabling nuanced integration of complementary information. We evaluate GAF-FusionNet on three diverse ECG datasets: ECG200, ECG5000, and the MIT-BIH Arrhythmia Database. Results demonstrate significant improvements over state-of-the-art methods, with our model achieving 94.5\%, 96.9\%, and 99.6\% accuracy on the respective datasets. Our code will soon be available at https://github.com/Cross-Innovation-Lab/GAF-FusionNet.git.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.