Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 166 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Commutator Estimates and Quantitative Local Weyl's Law for Schrödinger Operators with Non-Smooth Potentials (2501.01381v2)

Published 2 Jan 2025 in math-ph, math.AP, math.MP, math.SP, and quant-ph

Abstract: We analyze semi-classical Schr\"odinger operators with potentials of class $C{1,1/2}$ and establish commutator estimates for the associated projection operators in Schatten norms. These are then applied to prove quantitative versions of the local and phase space Weyl laws in $Lp$ spaces. We study both non-interacting, and interacting particle systems. In particular, we are able to treat the case of the minimizers of the Hartree energy in the case of repulsive singular pair interactions such as the Coulomb potential.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 2 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube