Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

HoneypotNet: Backdoor Attacks Against Model Extraction (2501.01090v1)

Published 2 Jan 2025 in cs.CR and cs.CV

Abstract: Model extraction attacks are one type of inference-time attacks that approximate the functionality and performance of a black-box victim model by launching a certain number of queries to the model and then leveraging the model's predictions to train a substitute model. These attacks pose severe security threats to production models and MLaaS platforms and could cause significant monetary losses to the model owners. A body of work has proposed to defend machine learning models against model extraction attacks, including both active defense methods that modify the model's outputs or increase the query overhead to avoid extraction and passive defense methods that detect malicious queries or leverage watermarks to perform post-verification. In this work, we introduce a new defense paradigm called attack as defense which modifies the model's output to be poisonous such that any malicious users that attempt to use the output to train a substitute model will be poisoned. To this end, we propose a novel lightweight backdoor attack method dubbed HoneypotNet that replaces the classification layer of the victim model with a honeypot layer and then fine-tunes the honeypot layer with a shadow model (to simulate model extraction) via bi-level optimization to modify its output to be poisonous while remaining the original performance. We empirically demonstrate on four commonly used benchmark datasets that HoneypotNet can inject backdoors into substitute models with a high success rate. The injected backdoor not only facilitates ownership verification but also disrupts the functionality of substitute models, serving as a significant deterrent to model extraction attacks.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.