Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 170 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 45 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Non-obvious Manipulability in Hedonic Games with Friends Appreciation Preferences (2501.00976v1)

Published 1 Jan 2025 in cs.GT

Abstract: In this paper, we study non-obvious manipulability (NOM), a relaxed form of strategyproofness, in the context of Hedonic Games (HGs) with Friends Appreciation (FA) preferences. In HGs, the aim is to partition agents into coalitions according to their preferences which solely depend on the coalition they are assigned to. Under FA preferences, agents consider any other agent either a friend or an enemy, preferring coalitions with more friends and, in case of ties, the ones with fewer enemies. Our goal is to design mechanisms that prevent manipulations while optimizing social welfare. Prior research established that computing a welfare maximizing (optimum) partition for FA preferences is not strategyproof, and the best-known approximation to the optimum subject to strategyproofness is linear in the number of agents. In this work, we explore NOM to improve approximation results. We first prove the existence of a NOM mechanism that always outputs the optimum; however, we also demonstrate that the computation of an optimal partition is NP-hard. To address this complexity, we focus on approximation mechanisms and propose a NOM mechanism guaranteeing a $(4+o(1))$-approximation in polynomial time. Finally, we briefly discuss NOM in the case of Enemies Aversion (EA) preferences, the counterpart of FA, where agents give priority to coalitions with fewer enemies and show that no mechanism computing the optimum can be NOM.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.