Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 148 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Enhancing Early Diabetic Retinopathy Detection through Synthetic DR1 Image Generation: A StyleGAN3 Approach (2501.00954v1)

Published 1 Jan 2025 in eess.IV, cs.AI, and cs.CV

Abstract: Diabetic Retinopathy (DR) is a leading cause of preventable blindness. Early detection at the DR1 stage is critical but is hindered by a scarcity of high-quality fundus images. This study uses StyleGAN3 to generate synthetic DR1 images characterized by microaneurysms with high fidelity and diversity. The aim is to address data scarcity and enhance the performance of supervised classifiers. A dataset of 2,602 DR1 images was used to train the model, followed by a comprehensive evaluation using quantitative metrics, including Frechet Inception Distance (FID), Kernel Inception Distance (KID), and Equivariance with respect to translation (EQ-T) and rotation (EQ-R). Qualitative assessments included Human Turing tests, where trained ophthalmologists evaluated the realism of synthetic images. Spectral analysis further validated image quality. The model achieved a final FID score of 17.29, outperforming the mean FID of 21.18 (95 percent confidence interval - 20.83 to 21.56) derived from bootstrap resampling. Human Turing tests demonstrated the model's ability to produce highly realistic images, though minor artifacts near the borders were noted. These findings suggest that StyleGAN3-generated synthetic DR1 images hold significant promise for augmenting training datasets, enabling more accurate early detection of Diabetic Retinopathy. This methodology highlights the potential of synthetic data in advancing medical imaging and AI-driven diagnostics.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube