Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 82 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Efficient Approximate Degenerate Ordered Statistics Decoding for Quantum Codes via Reliable Subset Reduction (2412.21118v2)

Published 30 Dec 2024 in quant-ph, cs.IT, and math.IT

Abstract: Efficient decoding of quantum codes is crucial for achieving high-performance quantum error correction. In this paper, we introduce the concept of approximate degenerate decoding and integrate it with ordered statistics decoding (OSD). Previously, we proposed a reliability metric that leverages both hard and soft decisions from the output of belief propagation (BP), which is particularly useful for identifying highly reliable subsets of variables. Using the approach of reliable subset reduction, we reduce the effective problem size. Additionally, we identify a degeneracy condition that allows high-order OSD to be simplified to order-0 OSD. By integrating these techniques, we present an ADOSD algorithm that significantly improves OSD efficiency in the code capacity noise model. We demonstrate the effectiveness of our BP+ADOSD approach through extensive simulations on a varity of quantum codes, including generalized hypergraph-product codes, topological codes, lift-connected surface codes, and bivariate bicycle codes. The results indicate that the BP+ADOSD decoder outperforms existing methods, achieving higher error thresholds and enhanced performance at low error rates. Additionally, we validate the efficiency of our approach in terms of computational time, demonstrating that ADOSD requires, on average, the same amount of time as two to three BP iterations on surface codes at a depolarizing error rate of around $1\%$. All the proposed algorithms are compared using single-threaded CPU implementations.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Reddit Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube