Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 98 tok/s Pro
Kimi K2 187 tok/s Pro
GPT OSS 120B 453 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

AlignAb: Pareto-Optimal Energy Alignment for Designing Nature-Like Antibodies (2412.20984v1)

Published 30 Dec 2024 in cs.LG

Abstract: We present a three-stage framework for training deep learning models specializing in antibody sequence-structure co-design. We first pre-train a LLM using millions of antibody sequence data. Then, we employ the learned representations to guide the training of a diffusion model for joint optimization over both sequence and structure of antibodies. During the final alignment stage, we optimize the model to favor antibodies with low repulsion and high attraction to the antigen binding site, enhancing the rationality and functionality of the designs. To mitigate conflicting energy preferences, we extend AbDPO (Antibody Direct Preference Optimization) to guide the model towards Pareto optimality under multiple energy-based alignment objectives. Furthermore, we adopt an iterative learning paradigm with temperature scaling, enabling the model to benefit from diverse online datasets without requiring additional data. In practice, our proposed methods achieve high stability and efficiency in producing a better Pareto front of antibody designs compared to top samples generated by baselines and previous alignment techniques. Through extensive experiments, we showcase the superior performance of our methods in generating nature-like antibodies with high binding affinity consistently.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube