On weakly exact Lagrangians in Liouville bi-fillings (2412.20941v2)
Abstract: Here we study several questions concerning Liouville domains that are diffeomorphic to cylinders, so called trivial bi-fillings, for which the Liouville skeleton moreover is smooth and of codimension one; we also propose the notion of a Liouville-Hamiltonian structure, which encodes the symplectic structure of a hypersurface tangent to the Liouville flow, e.g. the skeleton of a bi-filling. We show that the symplectic homology of a bi-filling is non-trivial, and that a connected Lagrangian inside a bi-filling whose boundary lives in different components of the contact boundary automatically has non-vanishing wrapped Floer cohomology. We also prove geometric vanishing and non-vanishing criteria for the wrapped Floer cohomology of an exact Lagrangian with disconnected cylindrical ends. Finally, we give homotopy-theoretic restrictions on the closed weakly exact Lagrangians in the McDuff and torus bundle Liouville domains.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.