Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 84 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 96 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Kimi K2 189 tok/s Pro
2000 character limit reached

Similar but Patched Code Considered Harmful -- The Impact of Similar but Patched Code on Recurring Vulnerability Detection and How to Remove Them (2412.20740v1)

Published 30 Dec 2024 in cs.SE and cs.CR

Abstract: Identifying recurring vulnerabilities is crucial for ensuring software security. Clone-based techniques, while widely used, often generate many false alarms due to the existence of similar but patched (SBP) code, which is similar to vulnerable code but is not vulnerable due to having been patched. Although the SBP code poses a great challenge to the effectiveness of existing approaches, it has not yet been well explored. In this paper, we propose a programming language agnostic framework, Fixed Vulnerability Filter (FVF), to identify and filter such SBP instances in vulnerability detection. Different from existing studies that leverage function signatures, our approach analyzes code change histories to precisely pinpoint SBPs and consequently reduce false alarms. Evaluation under practical scenarios confirms the effectiveness and precision of our approach. Remarkably, FVF identifies and filters 65.1% of false alarms from four vulnerability detection tools (i.e., ReDeBug, VUDDY, MVP, and an elementary hash-based approach) without yielding false positives. We further apply FVF to 1,081 real-world software projects and construct a real-world SBP dataset containing 6,827 SBP functions. Due to the SBP nature, the dataset can act as a strict benchmark to test the sensitivity of the vulnerability detection approach in distinguishing real vulnerabilities and SBPs. Using this dataset, we demonstrate the ineffectiveness of four state-of-the-art deep learning-based vulnerability detection approaches. Our dataset can help developers make a more realistic evaluation of vulnerability detection approaches and also paves the way for further exploration of real-world SBP scenarios.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.