Papers
Topics
Authors
Recent
2000 character limit reached

Protégé: Learn and Generate Basic Makeup Styles with Generative Adversarial Networks (GANs) (2412.20381v1)

Published 29 Dec 2024 in cs.CV and cs.MM

Abstract: Makeup is no longer confined to physical application; people now use mobile apps to digitally apply makeup to their photos, which they then share on social media. However, while this shift has made makeup more accessible, designing diverse makeup styles tailored to individual faces remains a challenge. This challenge currently must still be done manually by humans. Existing systems, such as makeup recommendation engines and makeup transfer techniques, offer limitations in creating innovative makeups for different individuals "intuitively" -- significant user effort and knowledge needed and limited makeup options available in app. Our motivation is to address this challenge by proposing Prot\'eg\'e, a new makeup application, leveraging recent generative model -- GANs to learn and automatically generate makeup styles. This is a task that existing makeup applications (i.e., makeup recommendation systems using expert system and makeup transfer methods) are unable to perform. Extensive experiments has been conducted to demonstrate the capability of Prot\'eg\'e in learning and creating diverse makeups, providing a convenient and intuitive way, marking a significant leap in digital makeup technology!

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.