Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 28 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 125 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

NeutronTP: Load-Balanced Distributed Full-Graph GNN Training with Tensor Parallelism (2412.20379v1)

Published 29 Dec 2024 in cs.DC

Abstract: Graph neural networks (GNNs) have emerged as a promising direction. Training large-scale graphs that relies on distributed computing power poses new challenges. Existing distributed GNN systems leverage data parallelism by partitioning the input graph and distributing it to multiple workers. However, due to the irregular nature of the graph structure, existing distributed approaches suffer from unbalanced workloads and high overhead in managing cross-worker vertex dependencies. In this paper, we leverage tensor parallelism for distributed GNN training. GNN tensor parallelism eliminates cross-worker vertex dependencies by partitioning features instead of graph structures. Different workers are assigned training tasks on different feature slices with the same dimensional size, leading to a complete load balance. We achieve efficient GNN tensor parallelism through two critical functions. Firstly, we employ a generalized decoupled training framework to decouple NN operations from graph aggregation operations, significantly reducing the communication overhead caused by NN operations which must be computed using complete features. Secondly, we employ a memory-efficient task scheduling strategy to support the training of large graphs exceeding single GPU memory, while further improving performance by overlapping communication and computation. By integrating the above techniques, we propose a distributed GNN training system NeutronTP. Our experimental results on a 16-node Aliyun cluster demonstrate that NeutronTP achieves 1.29X-8.72X speedup over state-of-the-art GNN systems including DistDGL, NeutronStar, and Sancus.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.