Papers
Topics
Authors
Recent
Search
2000 character limit reached

Strange and pseudo-differentiable functions with applications to prime partitions

Published 28 Dec 2024 in math.NT | (2412.20102v2)

Abstract: Let $\mathfrak{p}{\mathbb{P}_r}(n)$ denote the number of partitions of $n$ into $r$-full primes. We use the Hardy-Littlewood circle method to find the asymptotic of $\mathfrak{p}{\mathbb{P}_r}(n)$ as $n \to \infty$. This extends previous results in the literature of partitions into primes. We also show an analogue result involving convolutions of von Mangoldt functions and the zeros of the Riemann zeta-function. To handle the resulting non-principal major arcs we introduce the definition of strange functions and pseudo-differentiability.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.