Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 69 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 42 tok/s Pro
GPT-5 High 41 tok/s Pro
GPT-4o 120 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Hybrid Machine Learning and Physics-based Modelling of Pedestrian Pushing Behaviours at Bottlenecks (2412.20058v1)

Published 28 Dec 2024 in physics.soc-ph

Abstract: In high-density crowds, close proximity between pedestrians makes the steady state highly vulnerable to disruption by pushing behaviours, potentially leading to serious accidents. However, the scarcity of experimental data has hindered systematic studies of its mechanisms and accurate modelling. Using behavioural data from bottleneck experiments, we investigate pedestrian heterogeneity in pushing tendencies, showing that pedestrians tend to push under high-motivation and in wider corridors. We introduce a spatial discretization method to encode neighbour states into feature vectors, serving together with pedestrian pushing tendencies as inputs to a random forest model for predicting pushing behaviours. Through comparing speed-headway relationships, we reveal that pushing behaviours correspond to an aggressive space-utilization movement strategy. Consequently, we propose a hybrid machine learning and physics-based model integrating pushing tendencies heterogeneity, pushing behaviours prediction, and dynamic movement strategies adjustment. Validations show that the hybrid model effectively reproduces experimental crowd dynamics and fits to incorporate additional behaviours.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.