Reinforcement Learning Driven Multi-Robot Exploration via Explicit Communication and Density-Based Frontier Search (2412.20049v1)
Abstract: Collaborative multi-agent exploration of unknown environments is crucial for search and rescue operations. Effective real-world deployment must address challenges such as limited inter-agent communication and static and dynamic obstacles. This paper introduces a novel decentralized collaborative framework based on Reinforcement Learning to enhance multi-agent exploration in unknown environments. Our approach enables agents to decide their next action using an agent-centered field-of-view occupancy grid, and features extracted from $\text{A}*$ algorithm-based trajectories to frontiers in the reconstructed global map. Furthermore, we propose a constrained communication scheme that enables agents to share their environmental knowledge efficiently, minimizing exploration redundancy. The decentralized nature of our framework ensures that each agent operates autonomously, while contributing to a collective exploration mission. Extensive simulations in Gymnasium and real-world experiments demonstrate the robustness and effectiveness of our system, while all the results highlight the benefits of combining autonomous exploration with inter-agent map sharing, advancing the development of scalable and resilient robotic exploration systems.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.