Papers
Topics
Authors
Recent
2000 character limit reached

Multi-View Fusion Neural Network for Traffic Demand Prediction (2412.19839v1)

Published 24 Dec 2024 in cs.CV

Abstract: The extraction of spatial-temporal features is a crucial research in transportation studies, and current studies typically use a unified temporal modeling mechanism and fixed spatial graph for this purpose. However, the fixed spatial graph restricts the extraction of spatial features for similar but not directly connected nodes, while the unified temporal modeling mechanism overlooks the heterogeneity of temporal variation of different nodes. To address these challenges, a multi-view fusion neural network (MVFN) approach is proposed. In this approach, spatial local features are extracted through the use of a graph convolutional network (GCN), and spatial global features are extracted using a cosine re-weighting linear attention mechanism (CLA). The GCN and CLA are combined to create a graph-cosine module (GCM) for the extraction of overall spatial features. Additionally, the multi-channel separable temporal convolutional network (MSTCN) makes use of a multi-channel temporal convolutional network (MTCN) at each layer to extract unified temporal features, and a separable temporal convolutional network (STCN) to extract independent temporal features. Finally, the spatial-temporal feature data is input into the prediction layer to obtain the final result. The model has been validated on two traffic demand datasets and achieved the best prediction accuracy.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.