Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 104 tok/s
Gemini 3.0 Pro 36 tok/s Pro
Gemini 2.5 Flash 133 tok/s Pro
Kimi K2 216 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Nanoscaling Floating-Point (NxFP): NanoMantissa, Adaptive Microexponents, and Code Recycling for Direct-Cast Compression of Large Language Models (2412.19821v1)

Published 15 Dec 2024 in cs.AR, cs.AI, cs.DC, and cs.LG

Abstract: As cutting-edge LLMs continue to transform various industries, their fast-growing model size and sequence length have led to memory traffic and capacity challenges. Recently, AMD, Arm, Intel, Meta, Microsoft, NVIDIA, and Qualcomm have proposed a Microscaling standard (Mx), which augments block floating-point with microexponents to achieve promising perplexity-to-footprint trade-offs. However, the Microscaling suffers from significant perplexity degradation on modern LLMs with less than six bits. This paper profiles modern LLMs and identifies three main challenges of low-bit Microscaling format, i.e., inaccurate tracking of outliers, vacant quantization levels, and wasted binary code. In response, Nanoscaling (NxFP) proposes three techniques, i.e., NanoMantissa, Adaptive Microexponent, and Code Recycling to enable better accuracy and smaller memory footprint than state-of-the-art MxFP. Experimental results on direct-cast inference across various modern LLMs demonstrate that our proposed methods outperform state-of-the-art MxFP by up to 0.64 in perplexity and by up to 30% in accuracy on MMLU benchmarks. Furthermore, NxFP reduces memory footprint by up to 16% while achieving comparable perplexity as MxFP.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We found no open problems mentioned in this paper.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 15 likes.

Upgrade to Pro to view all of the tweets about this paper: