Multiplicative Chern insulator (2412.19566v3)
Abstract: We study multiplicative Chern insulators (MCIs) as canonical examples of multiplicative topological phases of matter. Constructing the MCI Bloch Hamiltonian as a symmetry-protected tensor product of two topologically non-trivial parent Chern insulators (CIs), we study two-dimensional (2D) MCIs and introduce 3D mixed MCIs, constructed by requiring the two 2D parent Hamiltonians share only one momentum component. We study the 2D MCI response to time reversal symmetric flux insertion, observing a $4\pi$ Aharonov-Bohm effect, relating these topological states to fractional quantum Hall states via the effective field theory of the quantum skyrmion Hall effect. As part of this response, we observe evidence of quantisation of a proposed topological invariant for compactified many-body states, to a rational number, suggesting higher-dimensional topology may also be relevant. Finally, we study effects of bulk perturbations breaking the symmetry-protected tensor product structure of the child Hamiltonian, finding the MCI evolves adiabatically into a topological skyrmion phase.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.