Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 159 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 352 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Quantum Algorithm for Vector Set Orthogonal Normalization and Matrix QR Decomposition with Polynomial Speedup (2412.19090v2)

Published 26 Dec 2024 in quant-ph

Abstract: Vector set orthogonal normalization and matrix QR decomposition are fundamental problems in matrix analysis with important applications in many fields. We know that Gram-Schmidt process is a widely used method to solve these two problems. However, the existing methods, including Gram-Schmidt process have problems of high complexity, scaling $O(N3)$ in the system dimension $N$, which leads to difficulties when calculating large-scale or ill-conditioned problems. With the development of quantum information processing, a series of quantum algorithms have been proposed, providing advantages and speedups over classical algorithms in many fields. In this paper, we propose quantum algorithms to solve these two problems based on the idea of Gram-Schmidt process and quantum phase estimation. The complexity of proposed quantum algorithms is also theoretically and numerically analyzed. We find that our algorithms provide polynomial acceleration over the best-known classical and quantum algorithms on these two problems, scaling $O(N2\mathrm{poly}(\log N))$ in the dimension $N$ of the system.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.