Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 179 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 40 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

LLM-assisted Vector Similarity Search (2412.18819v2)

Published 25 Dec 2024 in cs.AI, cs.IR, and cs.LG

Abstract: As data retrieval demands become increasingly complex, traditional search methods often fall short in addressing nuanced and conceptual queries. Vector similarity search has emerged as a promising technique for finding semantically similar information efficiently. However, its effectiveness diminishes when handling intricate queries with contextual nuances. This paper explores a hybrid approach combining vector similarity search with LLMs to enhance search accuracy and relevance. The proposed two-step solution first employs vector similarity search to shortlist potential matches, followed by an LLM for context-aware ranking of the results. Experiments on structured datasets demonstrate that while vector similarity search alone performs well for straightforward queries, the LLM-assisted approach excels in processing complex queries involving constraints, negations, or conceptual requirements. By leveraging the natural language understanding capabilities of LLMs, this method improves the accuracy of search results for complex tasks without sacrificing efficiency. We also discuss real-world applications and propose directions for future research to refine and scale this technique for diverse datasets and use cases. Original article: https://engineering.grab.com/LLM-assisted-vector-similarity-search

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper:

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube