Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Tuning Nonlinear Elastic Materials under Small and Large Deformations (2412.18631v1)

Published 21 Dec 2024 in cs.GR and cond-mat.mtrl-sci

Abstract: In computer graphics and engineering, nonlinear elastic material properties of 3D volumetric solids are typically adjusted by selecting a material family, such as St. Venant Kirchhoff, Linear Corotational, (Stable) Neo-Hookean, Ogden, etc., and then selecting the values of the specific parameters for that family, such as the Lame parameters, Ogden exponents, or whatever the parameterization of a particular family may be. However, the relationships between those parameter values, and visually intuitive material properties such as object's "stiffness", volume preservation, or the "amount of nonlinearity", are less clear and can be tedious to tune. For an arbitrary isotropic hyperelastic energy density function psi that is not parameterized in terms of the Lame parameters, it is not even clear what the Lame parameters and Young's modulus and Poisson's ratio are. Starting from psi, we first give a concise definition of Lame parameters, and therefore Young's modulus and Poisson's ratio. Second, we give a method to adjust the object's three salient properties, namely two small-deformation properties (overall "stiffness", and amount of volume preservation, prescribed by object's Young's modulus and Poisson's ratio), and one large-deformation property (material nonlinearity). We do this in a manner whereby each of these three properties is decoupled from the other two properties, and can therefore be set independently. This permits a new ability, namely "normalization" of materials: starting from two distinct materials, we can "normalize" them so that they have the same small deformation properties, or the same large-deformation nonlinearity behavior, or both. Furthermore, our analysis produced a useful theoretical result, namely it establishes that Linear Corotational materials (arguably the most widely used materials in computer graphics) are the simplest possible nonlinear materials.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 1 like.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube