Papers
Topics
Authors
Recent
2000 character limit reached

Efficient Aircraft Design Optimization Using Multi-Fidelity Models and Multi-fidelity Physics Informed Neural Networks (2412.18564v1)

Published 24 Dec 2024 in cs.LG and cs.CE

Abstract: Aircraft design optimization traditionally relies on computationally expensive simulation techniques such as Finite Element Method (FEM) and Finite Volume Method (FVM), which, while accurate, can significantly slow down the design iteration process. The challenge lies in reducing the computational complexity while maintaining high accuracy for quick evaluations of multiple design alternatives. This research explores advanced methods, including surrogate models, reduced-order models (ROM), and multi-fidelity machine learning techniques, to achieve more efficient aircraft design evaluations. Specifically, the study investigates the application of Multi-fidelity Physics-Informed Neural Networks (MPINN) and autoencoders for manifold alignment, alongside the potential of Generative Adversarial Networks (GANs) for refining design geometries. Through a proof-of-concept task, the research demonstrates the ability to predict high-fidelity results from low-fidelity simulations, offering a path toward faster and more cost effective aircraft design iterations.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.