Papers
Topics
Authors
Recent
2000 character limit reached

GCN-ABFT: Low-Cost Online Error Checking for Graph Convolutional Networks (2412.18534v1)

Published 24 Dec 2024 in cs.AR and cs.LG

Abstract: Graph convolutional networks (GCNs) are popular for building machine-learning application for graph-structured data. This widespread adoption led to the development of specialized GCN hardware accelerators. In this work, we address a key architectural challenge for GCN accelerators: how to detect errors in GCN computations arising from random hardware faults with the least computation cost. Each GCN layer performs a graph convolution, mathematically equivalent to multiplying three matrices, computed through two separate matrix multiplications. Existing Algorithm-based Fault Tolerance(ABFT) techniques can check the results of individual matrix multiplications. However, for a GCN layer, this check should be performed twice. To avoid this overhead, this work introduces GCN-ABFT that directly calculates a checksum for the entire three-matrix product within a single GCN layer, providing a cost-effective approach for error detection in GCN accelerators. Experimental results demonstrate that GCN-ABFT reduces the number of operations needed for checksum computation by over 21% on average for representative GCN applications. These savings are achieved without sacrificing fault-detection accuracy, as evidenced by the presented fault-injection analysis.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.