2000 character limit reached
Leveraging Sentiment for Offensive Text Classification
Published 9 Dec 2024 in cs.CL | (2412.17825v1)
Abstract: In this paper, we conduct experiment to analyze whether models can classify offensive texts better with the help of sentiment. We conduct this experiment on the SemEval 2019 task 6, OLID, dataset. First, we utilize pre-trained LLMs to predict the sentiment of each instance. Later we pick the model that achieved the best performance on the OLID test set, and train it on the augmented OLID set to analyze the performance. Results show that utilizing sentiment increases the overall performance of the model.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.