Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 170 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Towards An Unsupervised Learning Scheme for Efficiently Solving Parameterized Mixed-Integer Programs (2412.17623v2)

Published 23 Dec 2024 in math.OC and cs.LG

Abstract: In this paper, we describe a novel unsupervised learning scheme for accelerating the solution of a family of mixed integer programming (MIP) problems. Distinct substantially from existing learning-to-optimize methods, our proposal seeks to train an autoencoder (AE) for binary variables in an unsupervised learning fashion, using data of optimal solutions to historical instances for a parametric family of MIPs. By a deliberate design of AE architecture and exploitation of its statistical implication, we present a simple and straightforward strategy to construct a class of cutting plane constraints from the decoder parameters of an offline-trained AE. These constraints reliably enclose the optimal binary solutions of new problem instances thanks to the representation strength of the AE. More importantly, their integration into the primal MIP problem leads to a tightened MIP with the reduced feasible region, which can be resolved at decision time using off-the-shelf solvers with much higher efficiency. Our method is applied to a benchmark batch process scheduling problem formulated as a mixed integer linear programming (MILP) problem. Comprehensive results demonstrate that our approach significantly reduces the computational cost of off-the-shelf MILP solvers while retaining a high solution quality. The codes of this work are open-sourced at https://github.com/qushiyuan/AE4BV.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube