Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 170 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

RL-SPH: Learning to Achieve Feasible Solutions for Integer Linear Programs (2411.19517v6)

Published 29 Nov 2024 in cs.LG and cs.AI

Abstract: Integer linear programming (ILP) is widely utilized for various combinatorial optimization problems. Primal heuristics play a crucial role in quickly finding feasible solutions for NP-hard ILP. Although $\textit{end-to-end learning}$-based primal heuristics (E2EPH) have recently been proposed, they are typically unable to independently generate feasible solutions and mainly focus on binary variables. Ensuring feasibility is critical, especially when handling non-binary integer variables. To address this challenge, we propose RL-SPH, a novel reinforcement learning-based start primal heuristic capable of independently generating feasible solutions, even for ILP involving non-binary integers. Experimental results demonstrate that RL-SPH rapidly obtains high-quality feasible solutions, achieving on average a 44x lower primal gap and a 2.3x lower primal integral compared to existing primal heuristics.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.