Papers
Topics
Authors
Recent
2000 character limit reached

Comparative Analysis of Document-Level Embedding Methods for Similarity Scoring on Shakespeare Sonnets and Taylor Swift Lyrics (2412.17552v1)

Published 23 Dec 2024 in cs.CL and cs.IR

Abstract: This study evaluates the performance of TF-IDF weighting, averaged Word2Vec embeddings, and BERT embeddings for document similarity scoring across two contrasting textual domains. By analysing cosine similarity scores, the methods' strengths and limitations are highlighted. The findings underscore TF-IDF's reliance on lexical overlap and Word2Vec's superior semantic generalisation, particularly in cross-domain comparisons. BERT demonstrates lower performance in challenging domains, likely due to insufficient domainspecific fine-tuning.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.