Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 163 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 125 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

The Hydrodynamic Limit of Neural Networks with Balanced Excitation and Inhibition (2412.17273v1)

Published 23 Dec 2024 in math-ph, math.MP, math.PR, and q-bio.NC

Abstract: The theory of `Balanced Neural Networks' is a very popular explanation for the high degree of variability and stochasticity in the brain's activity. We determine equations for the hydrodynamic limit of a balanced all-to-all network of 2n neurons for asymptotically large n. The neurons are divided into two classes (excitatory and inhibitory). Each excitatory neuron excites every other neuron, and each inhibitory neuron inhibits all of the other neurons. The model is of a stochastic hybrid nature, such that the synaptic response of each neuron is governed by an ordinary differential equation. The effect of neuron j on neuron k is dictated by a spiking Poisson Process, with intensity given by a sigmoidal function of the synaptic potentiation of neuron j. The interactions are scaled by n{-1/2} , which is much stronger than the n{-1} scaling of classical interacting particle systems. We demonstrate that, under suitable conditions, the system does not blow up as n asymptotes to infinity because the network activity is balanced between excitatory and inhibitory inputs. The limiting population dynamics is proved to be Gaussian: with the mean determined by the balanced between excitation and inhibition, and the variance determined by the Central Limit Theorem for inhomogeneous Poisson Processes. The limiting equations can thus be expressed as autonomous Ordinary Differential Equations for the means and variances.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 2 likes.

Upgrade to Pro to view all of the tweets about this paper:

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube