Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Efficient Row-Level Lineage Leveraging Predicate Pushdown (2412.16864v1)

Published 22 Dec 2024 in cs.DB

Abstract: Row-level lineage explains what input rows produce an output row through a data processing pipeline, having many applications like data debugging, auditing, data integration, etc. Prior work on lineage falls in two lines: eager lineage tracking and lazy lineage inference. Eager tracking integrates lineage tracing tightly into the operator implementation, enabling efficient customized tracking. However, this approach is intrusive, system-specific, and lacks adaptability. In contrast, lazy inference generates additional queries to compute lineage; it can be easily applied to any database, but the lineage query is usually slow. Furthermore, both approaches have limited coverage of the type of data processing pipeline supported due to operator-specific tracking or inference rules. In this work, we propose PredTrace, a lineage inference approach that achieves easy adaptation, low runtime overhead, efficient lineage querying, and high pipeline coverage. It achieves this by leveraging predicate pushdown: pushing a row-selection predicate that describes the target output down to source tables and querying the lineage by running the pushed-down predicate. PredTrace may require saving intermediate results when running the pipeline in order to compute the precise lineage. When this is not viable, it can still infer lineage but may return a superset. Compared to prior work, PredTrace achieves higher coverage on TPC-H queries as well as 70 sampled real-world data processing pipelines in which UDFs are widely used. It can infer lineage in seconds, outperforming prior lazy approaches by up to 10x.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube