From Correlation to Causation: Understanding Climate Change through Causal Analysis and LLM Interpretations (2412.16691v1)
Abstract: This research presents a three-step causal inference framework that integrates correlation analysis, machine learning-based causality discovery, and LLM-driven interpretations to identify socioeconomic factors influencing carbon emissions and contributing to climate change. The approach begins with identifying correlations, progresses to causal analysis, and enhances decision making through LLM-generated inquiries about the context of climate change. The proposed framework offers adaptable solutions that support data-driven policy-making and strategic decision-making in climate-related contexts, uncovering causal relationships within the climate change domain.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.