Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Divide and Conquer: A Hybrid Strategy Defeats Multimodal Large Language Models (2412.16555v3)

Published 21 Dec 2024 in cs.CL

Abstract: LLMs are widely applied in various fields of society due to their powerful reasoning, understanding, and generation capabilities. However, the security issues associated with these models are becoming increasingly severe. Jailbreaking attacks, as an important method for detecting vulnerabilities in LLMs, have been explored by researchers who attempt to induce these models to generate harmful content through various attack methods. Nevertheless, existing jailbreaking methods face numerous limitations, such as excessive query counts, limited coverage of jailbreak modalities, low attack success rates, and simplistic evaluation methods. To overcome these constraints, this paper proposes a multimodal jailbreaking method: JMLLM. This method integrates multiple strategies to perform comprehensive jailbreak attacks across text, visual, and auditory modalities. Additionally, we contribute a new and comprehensive dataset for multimodal jailbreaking research: TriJail, which includes jailbreak prompts for all three modalities. Experiments on the TriJail dataset and the benchmark dataset AdvBench, conducted on 13 popular LLMs, demonstrate advanced attack success rates and significant reduction in time overhead.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.