Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 104 tok/s
Gemini 3.0 Pro 36 tok/s Pro
Gemini 2.5 Flash 133 tok/s Pro
Kimi K2 216 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Multi-head attention debiasing and contrastive learning for mitigating Dataset Artifacts in Natural Language Inference (2412.16194v1)

Published 16 Dec 2024 in cs.CL

Abstract: While Natural Language Inference (NLI) models have achieved high performances on benchmark datasets, there are still concerns whether they truly capture the intended task, or largely exploit dataset artifacts. Through detailed analysis of the Stanford Natural Language Inference (SNLI) dataset, we have uncovered complex patterns of various types of artifacts and their interactions, leading to the development of our novel structural debiasing approach. Our fine-grained analysis of 9,782 validation examples reveals four major categories of artifacts: length-based patterns, lexical overlap, subset relationships, and negation patterns. Our multi-head debiasing architecture achieves substantial improvements across all bias categories: length bias accuracy improved from 86.03% to 90.06%, overlap bias from 91.88% to 93.13%, subset bias from 95.43% to 96.49%, and negation bias from 88.69% to 94.64%. Overall, our approach reduces the error rate from 14.19% to 10.42% while maintaining high performance on unbiased examples. Analysis of 1,026 error cases shows significant improvement in handling neutral relationships, traditionally one of the most challenging areas for NLI systems.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.