Papers
Topics
Authors
Recent
2000 character limit reached

Deciphering the Underserved: Benchmarking LLM OCR for Low-Resource Scripts (2412.16119v1)

Published 20 Dec 2024 in cs.LG, cs.CV, and eess.IV

Abstract: This study investigates the potential of LLMs, particularly GPT-4o, for Optical Character Recognition (OCR) in low-resource scripts such as Urdu, Albanian, and Tajik, with English serving as a benchmark. Using a meticulously curated dataset of 2,520 images incorporating controlled variations in text length, font size, background color, and blur, the research simulates diverse real-world challenges. Results emphasize the limitations of zero-shot LLM-based OCR, particularly for linguistically complex scripts, highlighting the need for annotated datasets and fine-tuned models. This work underscores the urgency of addressing accessibility gaps in text digitization, paving the way for inclusive and robust OCR solutions for underserved languages.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.